高考数学常见失分点解析

  • 家庭礼仪
  • 2024-09-02
篇1:高考数学常见失分点解析

数学是一切科学的基础,方法君今为大家汇总了历年高考数学最易失分知识点,希望可以解决同学们所遇到的相关问题。

01.遗忘空集致误

由于空集是任何非空集合的真子集,因此B=?时也满足B?A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

02.忽视集合元素的三性致误

集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

03.混淆命题的否定与否命题

命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。

04.充分条件、必要条件颠倒致误

对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A的必要条件;如果B?A成立,则A是B的必要条件,B是A的充分条件;如果A?B,则A,B互为充分必要条件.解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。

05.“或”“且”“非”理解不准致误

命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);綈p真?p假,綈p假?p真(概括为一真一假).求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。

06.函数的单调区间理解不准致误

在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

07.判断函数奇偶性忽略定义域致误

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

08.函数零点定理使用不当致误

如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点.函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。

09.导数的几何意义不明致误

函数在一点处的导数值是函数图像在该点处的切线的斜率.但在许多问题中,往往是要解决过函数图像外的一点向函数图像上引切线的问题,解决这类问题的基本思想是设出切点坐标,根据导数的几何意义写出切线方程.然后根据题目中给出的其他条件列方程(组)求解.因此解题中要分清是“在某点处的切线”,还是“过某点的切线”。

10.导数与极值关系不清致误

f′(x0)=0只是可导函数f(x)在x0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f′(x)在x0两侧异号.另外,已知极值点求参数时要进行检验。

11.三角函数的单调性判断致误

对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sin x的单调性相反,就不能再按照函数y=sin x的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决.对于带有绝对值的三角函数应该根据图像,从直观上进行判断。

12.图像变换方向把握不准致误

函数y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的图像可看作由下面的方法得到:(1)把正弦曲线上的所有点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度;(2)再把所得各点横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的1ω倍(纵坐标不变);(3)再把所得各点的纵坐标伸长(当A>1时)或缩短(当0<A<1时)到原来的A倍(横坐标不变).即先作相位变换,再作周期变换,最后作振幅变换.若先作周期变换,再作相位变换,应左(右)平移|φ|ω个单位.另外注意根据φ的符号判定平移的方向。

13.忽视零向量致误

零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线.它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视.

14.向量夹角范围不清致误

解题时要全面考虑问题.数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。

15.忽视斜率不存在致误

在解决两直线平行的相关问题时,若利用l1∥l2?k1=k2来求解,则要注意其前提条件是两直线不重合且斜率存在.如果忽略k1,k2不存在的情况,就会导致错解.这类问题也可以利用如下的结论求解,即直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0平行的必要条件是A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合从而确定问题的答案.对于解决两直线垂直的相关问题时也有类似的情况.利用l1⊥l2?k1·k2=-1时,要注意其前提条件是k1与k2必须同时存在.利用直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0,就可以避免讨论。

16.忽视零截距致误

解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式.因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况。

17.忽视圆锥曲线定义中条件致误

利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支。

18.误判直线与圆锥曲线位置关系

过定点的直线与双曲线的位置关系问题,基本的解决思路有两个:一是利用一元二次方程的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零,当二次项系数为零时,直线与双曲线的渐近线平行(或重合),也就是直线与双曲线最多只有一个交点;二是利用数形结合的思想,画出图形,根据图形判断直线和双曲线各种位置关系.在直线与圆锥曲线的位置关系中,抛物线和双曲线都有特殊情况,在解题时要注意,不要忘记其特殊性。

19.两个计数原理不清致误

分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提,在解题时,要分析计数对象的本质特征与形成过程,按照事件的结果来分类,按照事件的发生过程来分步,然后应用两个基本原理解决.对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于“至少、至多”型问题除了可以用分类方法处理外,还可以用间接法处理。

20.排列、组合不分致误

为了简化问题和表达方便,解题时应将具有实际意义的排列组合问题符号化、数学化,建立适当的模型,再应用相关知识解决.建立模型的关键是判断所求问题是排列问题还是组合问题,其依据主要是看元素的组成有没有顺序性,有顺序性的是排列问题,无顺序性的是组合问题。

21.混淆项系数与二项式系数致误

在二项式(a+b)n的展开式中,其通项Tr+1=Crnan-rbr是指展开式的第r+1项,因此展开式中第1,2,3,…,n项的二项式系数分别是C0n,C1n,C2n,…,Cn-1n,而不是C1n,C2n,C3n,…,Cnn.而项的系数是二项式系数与其他数字因数的积。

22.循环结束判断不准致误

控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条件.在解答这类题目时首先要弄清楚这两个变量的变化规律,其次要看清楚循环结束的条件,这个条件由输出要求所决定,看清楚是满足条件时结束还是不满足条件时结束。

23.条件结构对条件判断不准致误

条件结构的程序框图中对判断条件的分类是逐级进行的,其中没有遗漏也没有重复,在解题时对判断条件要仔细辨别,看清楚条件和函数的对应关系,对条件中的数值不要漏掉也不要重复了端点值。

24.复数的概念不清致误

对于复数a+bi(a,b∈R),a叫做实部,b叫做虚部;当且仅当b=0时,复数a+bi(a,b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数.解决复数概念类试题要仔细区分以上概念差别,防止出错.另外,i2=-1是实现实数与虚数互化的桥梁,要适时进行转化,解题时极易丢掉“-”而出错。

篇2:高考数学常见失分点解析

  无谓失误1:计算出错

  计算能力是高考数学考查的一项基本能力,但目前反映出来的问题是,很多考生计算能力非常不足。

  “在评卷过程中,我们经常看到考生解题的方法和思路都正确,但就是计算出错。很多解答题都是多步计算,中间步骤的计算出错会直接导致后续解答相应出错,造成严重丢分。一句话:不是不会做,而是计算错!”

  在这些错误中,最常见的是“代数式的恒等变形(含纯数字运算)”出错,包括整式、分式和二次根式的运算,因式分解等内容;其次是求解方程(组)与不等式(组)计算出错,这是很容易预防的错误。

  事实上,解方程或方程组时将所求出来的解代入到原方程或方程组进行检验即可发现正确与否,解不等式或不等式组则可以考虑用解集区间端点或一些特殊值进行检验。

  ★无谓失误2:答题不规范

  高考数学解答题明确要求考生写出文字说明、证明过程和演算步骤。考生们必须明白,做一道解答题实际是在写一篇数学作文!

  必须要把解答的思维过程无声地展示给评卷人员,而不是把一堆数学式子和数学符号写在试卷上即可。

  很多考生的文字说明词不达意,证明过程条件不明显、推理不到位、演算步骤详略不当、卷面不整洁。有些考生则是文字表述思路不清,令人费解,评卷老师需要猜测其解题意图。

  千万不要触碰高考答题要求的“红线”:必须在指定答题区域内书写相应题号的解答。有些考生将部分解答内容写在指定的区域之外,甚至有一些考生更改答题卡的题号,如在18题答题区域上将“18”涂改成“19”并将19题解答写在这个区域上,这些都会被作零分处理。

  ★无谓失误3:答非所选

  填空题同样是考生“无谓失分”较多的。一些考生做填空题时答非所选,即答题卡所选择的题目与实际做的题目不一致,但评卷时是根据所选题目进行评判的,当然不给分。

  此外,考生给出的结果不规范也易失分。比如答案是一个计算出来的具体数字,但考生只是给出了中间一步还没有算完的式子等等。

  不同分数段的学生有不同的提分窍门

  1. 60分考生赶紧去啃公式

  对于做历年试题、模考题能考60分,目标分数是90分的同学来说,梳理知识点很关键,因为考60分说明知识点没掌握好。数学科目中固定的公式其实没有同学们想象得那么多,一口气背下来,做题就会顺利很多。

  2. 80—90分奔120+的考生要总结常考题型

  那些现在能考八九十分,努力要拿下120分的同学,一般缺乏的是知识框架和条理。考生可把数学大题的每一道题作为一个章节,自己或者找老师把每章节的知识脉络捋顺。

  在这个基础上,再试着总结每道大题常考的几种题型。例如,数列题基本上第一问求通项公式(记住求通项公式常用的几种办法),第二问求前N项和(通常裂项相消或错位相减)或者数列的证明(包括不等式证明)。

  这样做题的时候大部分的内容就都了然于胸。只是要符合总结的框架套路的题,都是可以直接秒刷的,所花费的时间是用来计算、写字的。能做到这样,120分就不在话下了。

  其实要拿到120分并不难,只要分配好各种题型的丢分就可以了。选择加填空最多错3个,这个可以通过训练达到,因为大部分的题都是固定的。

  一般来说,有集合的题(称之为“简单送分的)、向量的题(送分的)、充分必要条件的题(送分的)、复数的题(送分的),立体几何三视图还原求体积表面积的题(经过训练就是送分的),有的省份还有线性规划的题(经过训练也是送分的)。当你总结出题目的出题策略时,答题就变得很简单了。

  关于大题方面,基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。至于解析几何,按照套路去写,有的题写着写着就有思路了。

  导数如果想出难题也非常难,但想拿满分也是很困难的。所以建议同学这两道题上可以丢一些分。总结下来,小题部分,15分可以丢;大题部分,丢分尽量控制在15分的范围内。

  3. 120+奔140+的考生要减少总体失分

  分数达到120+的同学,知识框架应该有了,做题的套路也有一些了。那么怎么提高?可以从上述丢分的地方抢分,把选填的分数拿到,把标准提高到最多错一个;大题部分就在丢分那两道题里再找提高的空间。

  考生要注意,这个时候前4道大题基本是不可再丢分的,否则就永远陷在120+的循环里出不来,最后都不知道该补哪一块了。

  4. 140+奔150的同学要转移复习中心

  现在数学140+,努力奔向150的同学们,只有一个建议——好好学英语、语文或其他科目去吧,你们的提升空间不在数学上。

  Tips数学:和试卷抢分也是有技巧的

  第一,高考数学评卷的主观性很少,评分细则都是细分到每一分。

  对于第三类难题虽然不会做,但只要解答符合给分点,也可以得分。如用向量法解决立体几何问题时(注意:有时不用向量法更简单)能正确建立坐标系,计算出关键点的坐标都可以得分;利用导数求函数的单调性问题,只要写出正确的定义域也可以得分;三角函数和概率统计题能正确写出相关的公式也可以得分等等。所以,碰到难题不要怕,会多少就写多少。

  第二,正确理解“做对”与“做快”的关系。

  数学高考首先将准确性放在第一位,不能一味追求速度或技巧。狠抓基础题,先小题后大题,最大限度减少失误,尽可能把会做的题都做对、做完,这是考好数学的重要法宝。

  第三,考试结束前几分钟,切记不要草率地把怀疑做错的大题解答过程从答卷上涂掉(因为不存在倒扣分的问题),此时如果还有题目没做,可以直接把你的分析过程写在答卷上,不要打草稿了。

  掌握了这些数学复习的学习方法和技巧之后,相信只需不断去实践,你的成绩就会不断提高。

篇3:高考数学常见失分点解析

  长宁区教育学院高中数学教研员沈子兴

  “这些题目不难,但我做错了”、“题目我都做了,怎么分数这么低啊?”每年高考后总有一批学生发出感叹、提出疑问。其实高考是对学生综合素质的全面检测,虽然每年试卷各有特点,但学生的错误往往存在着共性,这些错误对即将参加高考的学生却是宝贵资源。本文通过对今年高考生解题错误、失分原因的分类与分析,提供相应对策,避免新高三生重蹈覆辙。

  [失分原因1]

  对数学概念理解模糊,缺乏应用意识

  如第3题,由条件求动点轨迹方程,学生只要对照抛物线的定义即可直接写出抛物线方程,但由于对抛物线的定义缺乏应用的能力,一批学生看不出轨迹是抛物线,只好用直接法求轨迹方程,列出一个含绝对值和根号的等式,再进行化简,既繁琐又容易引起错误。

  第6题考查数学期望的概念,由于平时训练时都是求“数学期望”,而此时是求“随机变量的均值”,学生不知道两者是一回事,导致解题时不知所措。

  第15题考查充分必要条件的概念,背景是三角方程,由于不明白正切函数的周期,导致失分。

  第16题化参数方程为普通方程,再由直线的普通方程确定直线的方向向量,涉及到直线方程中的基本概念和基本方法,虽然很简单,但对概念的含糊不清导致了解题的错误。

  第22题给出了一个“新概念”,这比前几个问题要求提高了一步,首先要理解新概念,然后才能解决问题,概念的本质就是绝对值不等式,只要看透这一点,就可将“新概念”转化为“老问题”,但在解题过程中把不等号写反或凭自己的想象编造不等式的学生不在少数,主要原因是对“新概念”的不理解,同时缺少转化意识。

  对策1:注重概念的发生发展过程,理解概念的本质。

  我们每次学习一个新的数学概念时,必须弄清楚这样几个问题:为什么要学习这个概念?它是从哪里来?是怎么得到这个概念的?数学概念往往用简洁的几个字概括一段文字的意思,如函数、等差数列、等比数列、数学期望等,这几个字是如何提炼的?它的内涵是什么?这个概念在解题中如何运用?如果对每个数学概念都这样来学习,就能抓住概念的本质,产生对数学概念很强的理解能力,以后无论是独立学习新概念,还是让你定义一个新的数学概念,都会从容自如。

  对策2:重视概念的灵活运用,提高对“概念元素”的敏感度。

  一些同学感到“概念都记住了,但解题时怎么不会用呢?”,其实数学概念的学习不能靠死记硬背,在数学概念的学习过程中必须明确该概念有哪些作用、哪些问题可以利用它解决,特别要能够捕捉条件中与概念相关的“元素”,因为题目的表述有时不是那么直白,需要我们有一双“慧眼”,看出隐含在文字中的条件,因此分析条件时必须做到“慢、细、透”,养成良好的思维习惯,就能破解复杂多变的问题。

  [失分原因2]

  错误理解题意,导致解题错误

  如第7题是以上海世博会为背景考查学生对程序框图的理解,解题的关键在于对字母T、S、a意义的理解,典型的错误:一是不知“执行框”应该填什么,二是对字母S、a意义理解错误,因为S表示在每个整点报道的入园总人数,而a表示整点报道前一个小时内入园人数,这两者的关系应该是S与a的和为下一个整点报道的入园总人数,故应该填“S←S+a”。

  第9题考查相互独立事件的概率。许多学生不知道一副52张的扑克牌中“红桃K”有几张,“黑桃”有几张,其实这是生活常识,在课本中也有类似背景的题目。

  第21题是以空间图形为背景的应用题,考查学生空间图形的识别、线线、线面关系及函数关系的建立、函数最值的计算等,答题中典型的错误是对条件“为了制作……总计耗用9.6米铁丝”的误解,认为是四个全等矩形骨架的长度与上下底圆的周长之和为9.6,而实际上应是四个全等矩形骨架的长度为9.6,导致关系式的错误。

  对策3:审题做到“三心”,解题才能放心。

  审题时必须做到“耐心、细心、用心”,这是正确解题的基础,特别是对文字较长的题目,一定要有耐心,杜绝急躁,眼睛一扫而过,常会造成审题错误,看到文字题很烦躁,不能静心而为,这是当前学生的通病。仔细审题看清每一句话、每一个字,获取完整的信息,这是解题正确的基础,在此基础上用心考虑这些信息与头脑中已有知识的联系,将问题归类,选择适当的方法解决问题,这需要用心思考,这样才能保证解题思路的流畅。

  [失分原因3]

  运算变形能力差低级错误常发生

  每次大考后,总有一批学生面对考分后悔不已,“这些题目我都会做,只是算错了。”实在可惜啊。

  如第2题复数运算,每个学生都会算,但有一批人得不到正确结果,典型错误是不会利用复数性质进行巧算,不能正确利用复数乘法法则进行计算。

  第4题二阶行列式与三角比的结合,典型错误是二阶行列式展开中符号出错,两角和差的正弦公式记错,特殊角的三角比记错。

  第18题错在不能正确地利用三角形的面积公式将三条高的关系转化为三条边的关系,也就不能正确地判断三角形的形状。

  第19题由于对三角式的变形公式及对数的运算法则不能正确应用,同时对化简的要求不明确,导致在解题过程中乱用公式,越化越繁,最后半途而废。

  第23题中直线与椭圆联立方程组转化为一元二次方程,在表示弦的中点坐标及求两直线交点的过程中,多处出现错误,主要反映在对式子的变形能力上存在欠缺,能力达不到,这是平时训练的缺位造成这样的结果。

  对策4:端正态度、掌握算理、由慢到快、确保正确。

  许多学生误认为计算就是算一算,没有什么“花头”,“考试时细心一点就可以了”,这种错误的想法会给你带来终身遗憾,让你后悔一辈子,试想:平时不细心,考试怎么能细心呢?平时计算总是错误百出,考试时计算会正确吗?

  计算不仅是“算一算”的问题,还有“算理”的掌握,包括数字计算和式子的化简变形,这种能力是人的基本能力,它贯穿于整个学习的始终,一定要引起高度的重视。能力的提高不是一步能达到的,计算能力的提高更是一个循序渐进的过程,首先要确保正确率,因此先要慢再到快,始终将正确率放在首位,对每次测验或作业中计算方面的错误仔细分析原因及时纠正。

 

篇4:高考数学常见失分点解析

  对于理科学生而言,数学一般是强项,但越是强项的科目也就越容易大意。那么,根据理科生的实际特点,高考数学应该怎复习呢?下面来听一听老师的建议吧!

  无论一轮复习还是二轮复习都应该将重点放在基础知识、基本技能的训练上,尤其是计算能力的培养。

  复习中,学生要提炼高考热点,查漏补缺,针对易错的地方加强练习,熟练掌握解决中低档题目的方法。在此,提醒考生,千万别排斥高频率的模拟测试,它能帮助学生掌握答题的节奏、技巧,稳定心理状态,提高动手能力。

  回想这几年的高考情况,以下是考生容易失分的三个方面。

  第一,步骤不完整。从这几年看,高考答案的步骤非常详细,而有些考生虽然会做,最后的结果也对,但是缺少中间步骤,这样很容易失分。

  第二,审题不仔细。不少考生审题时,只看到了部分条件,例如f(x)≤0,有的学生就会当成f(x)<0,这样一来,全部错误。从往年的情况看,有的考生因为粗心丢掉了10多分。

  第三,答题时间安排不合理。数学选择题做题时间一般是2分钟,曾有一位女生,学习成绩非常好,考试中遇到一道不会做的题,耽误了15分钟,题是做出来了,可当她看到别的同学已经开始做解答题时,慌了,结果考得一塌糊涂。

  针对这些问题,特别提醒考生,考试中一定要规范答题,遇到不会做的题目时先放一放,此外就是一定要认真仔细,提高答题速度和准确性,要规范答题。