提升小学数学学习效率的策略

  • 家庭礼仪
  • 2024-07-28
篇1:提升小学数学学习效率的策略

  一、思考:思考是数学学习方法的核心。在学这门课中,思考有重大意义。解数学题时,首先要观察、分析、思考。思考往往能发现题目的特点,找出解题的突破口、简便的解题方法。在我们周围,凡是真正学得好的同学,都有勤于思考,经常开动脑筋的习惯,于是脑子就越用越灵,勤于思考变成了善于思考。我正因为掌握应用了这一方法,所以在全国数学竞赛中获得了武汉市一等奖。

  二、动手试一试:动手有助于消化学习过的知识,做到融会贯通。课下,我常常把老师讲过的公式进行推导,推导时不要看书,要默记。这样就能使自己对公式掌握滚瓜烂熟,可为公式变形计算打下扎实的基础。

  三、培养创造精神:所谓创造,就是想出新办法,做出新成绩,建立新理论。创造,就要不局限于老师、课本讲的方法。平时,有一些难度高的题目,我在听懂了老师讲的方法后,还要自己去找一找有没有另外的解法,这样能加深对题目的理解,能比较几种解法的利弊,使解题思维达到一个更高的境界。

  科学的学习方法在课内课外应注意些什么呢?

  第一,认真听老师讲课。这是我取得好成绩的主要原因。听讲时要做到全神贯注,聚精会神,跟着老师的思路走,不能开小差,更切忌一边讲话一边听讲。其次要专心凝听老师讲的每一个字,因为数学是以严谨著称的,一字之差就非同小可,一字之间就隐藏玄机无限。听讲时还要注意记笔记。一次老师讲了一个高难度的几何题,我一时没有听懂,多亏我记下了这道题以及解法,回家后仔细琢磨,终于理解透了,以至在一次竞赛中我轻而易举地解出了类似的一道题,获得了宝贵的10分。上课还要积极举手发言,举手发言的好处可真不少!①可以巩固当堂学到的知识。②锻炼了自己的口才。③那些模糊不清的观念和错误能得到老师的指教。真是一举三得。总之,听讲要做到手到、口到、眼到、耳到、心到。

  第二,课外练习。孔子曰:“学而时习之”。课后作业也是学习和巩固数学的重要环节。我很注意解题的精度和速度。精度就是准确度,专心致志地独立完成作业,力求一次性准确,而一旦有了错,要及时改正。而速度是为了锻炼自己注意力集中,有紧迫感。我经常是这样做的,在开始做作业时定好闹钟,放在自己看不见的地方再做作业,这样有助于提高作业速度。考试时,就不会紧张,也不会顾此失彼了。

  第三,复习、预习。对数学的复习,预习我定在每天晚上,在完成当天作业后,我将第二天要学的新知识简要地看一看,再回忆一下老师已讲过的内容。睡觉时躺在床上,脑海里再像看电影一样将老师上课的过程“看”一遍,如果有什么疑难,我立即爬起来看书,直到搞懂为止。每个星期天我还作一星期功课的小结复习、预习。这样对学数学有好处,并掌握得牢固,就不会忘记了。

  第四,提高。在完成作业和预习、复习之后,我就做一些爬坡题。做这类题,尽可能自己独立思考,努力找出隐藏的条件,这是解题的关键。如果实在想不出来就需要看一看参考书,以及请教师长和同学。总之,要做到多看、多做、多问、虚心、勤奋,保持积极向上的精神这才是关键的关键。解法的利弊,使解题思维达到一个更高的境界。

篇2:提升小学数学学习效率的策略

  数学、英语、语文,这几门主课是小学学习的重中之重。数学基础打得好,对将来的升学帮助巨大。课堂上老师主要讲解的是基本知识和解题方法,具体操作时遇到的问题就无法人人兼顾了。想要数学学的好,重担又落到了爸妈身上,但数学却是所有科目里最抽象的,孩子入门困难,学习过程中问题多多。经常出现反复栽在同一个问题上、数量关系分析不确定等问题,如果处理不好,很容易产生厌倦情绪,对学习数学失去信心。下面就将针对典型问题给爸妈们出谋划策啦!

  问题一:数学阅读能力差

  孩子在解决数学问题时经常会出现这样的现象:拿到题目,无从下手,有的停住笔头不动,有的苦思冥想眉头紧锁,这时,如果我们将题目读一遍,强调重点的字眼,或者加以停顿、重音,孩子就会恍然大悟:“哦,原来如此!”马上列出解题算式。这说明孩子在数学能力上并没有问题,造成解题困难是,不能够准确的抓住重点词,理解题目要求,从而不能快速正确的答题。这种类型的孩子,这并不全是数学问题,语文学习也没有到位,对题目的阅读水平低。这类孩子,对数学信息的敏感性差,思维转换慢,从而造成知识接受量少,理解问题时常出现错误或偏差,影响解决数学问题的能力,甚至影响到学习数学的兴趣和信心。

  对策:正确阅读和梳理数学信息

  1、爸妈在课后学习中,要多训练孩子抓住主要概念以及重点词句的能力,帮助他们体会题目的主要意思,引导他们正确地阅读和梳理数学信息,形成数学阅读的基本策略和方法。

  2、有些孩子在作业过程中存在求速的心理状态,审题时走马观花,粗心大意。对于做错的题目,爸妈要引导学生形成错题分析的习惯,而分析的目的在于让他们充分认识到,这些错误都是由于不正确的阅读导致的解题错误,让孩子明白“正确阅读”的重要性,监督他们仔细审题,真正弄懂题意后再下笔。

  3、低年级孩子受年龄特点和心理水平的限制,很难自主、细致地进行数学阅读,往往是想到什么就做什么,等到错了,就只会在老师的要求下更改,自我解决问题的能力提高缓慢,甚至停滞不前,有时还会产生反感或畏惧心理。这时爸妈们应该多给孩子们信任、鼓励,多用一些时间和孩子一起分析问题,面对错误。

  问题二:反复栽在一道题上

  常有爸妈抱怨自家孩子不长记性,一道题目重视反反复复的出错,每次改正后,都觉得自己懂了,但下一次遇到,还是要错。这样的情况,并不仅是孩子忘性大,还需进一步分析原因,是因为孩子没有吃透知识点,造成的同类题型解题困难;还是因为阅读能力低,造成题目“易容”后无法理解。

  对策:养成良好数学学习习惯

  这个情况比较普遍,主要是因为孩子没有养成良好的数学学习习惯。对于这个问题,首先要孩子检查自己错在哪里,思考题目考察的是什么知识点,要用哪些知识去解决。特别是出错后,要及时对问题进行分析总结,错题集是很好的方式。

  问题三:对数量关系分析不明确应用题把分析数量关系看作重中之重,但在实际解题过程中,孩子的注意力被题目中的情节吸引,对数量关系的分析的能力较弱。很多爸妈在辅导解题时,只是讲明白了加、减、乘、除之间的关系,但对其中的数量关系没有具象化的解释,孩子难以理解,更加难以运用,这是大部分孩子不能完全依靠抽象的逻辑思维能力来解决问题的重要原因。

  对策:善用图,提升解决问题能力

  爸妈们在辅导孩子过程中要多利用图像和擅长举例子。假设有一堆苹果,分给自己代表加,送给别人就是减,用这样的方式表达数量关系,将公式、抽象概念具象化。还应该注重孩子对问题的完整表述,可以在读题后,让孩子用自己的语言再复述一遍,有助于提升孩子解决问题的能力,养成良好的数学思维的习惯。

  问题四:缺乏对孩子应用意识、应用能力和创新能力的培养

  目前的课堂教学模式基本是灌输——接受,孩子完全处于一种被动接受的状态,老师注重的是如何把知识、结论准确地给学生讲清楚。这就导致了孩子的学习特点是:计算技能和解决常规问题能力比较强,但解决非常规问题的能力比较弱。当面临一个新的问题情境,由于缺少应用意识和应用能力,把这个情境数学转化成相应的实际问题并加以处理的灵活变通能力不足。

  对策:培养自主意识与多变思维空间能力

  在孩子遇到这类问题是,爸妈需要在讲解中增加更多生动形象的例子,充重利用空间思维扩展,不仅仅是局限于二维的空间,有机会还可以让孩子亲手实践一下。在形象生动的实践中传授引导概念及思维,让自己去找寻到答案,培养他们的自主意识与灵活多变的思维空间能力。

  问题五:数学学习与社会生活实际相脱离

  数学来源于生活,数学中的计算力、观察力、分析力、推理力、判断力等与生活息息相关紧密贴合,但传统课堂教学具有较强的自我封闭性,老师教的都是“纯粹”技能、技巧的训练和题型,脱离社会生活实际。长期的纸上谈兵、单调乏味的练习,既让孩子丧失了学习数学的兴趣,又不能在日常生活中解决各种各样的问题。即使一些数学技能掌握较好的孩子,面对一些现实的数学问题也常常感到困难。

  对策:用数学思维解决生活中问题

  爸妈应该多引导,让孩子把在校学到的知识灵活运用到日常生活中,或是引导孩子用数学思维去解决生活中的问题。比如生活中的爬楼梯计算,切蛋糕的角度与数量等,用这些常接触到的例子让孩子学会利用具象来体现数学关系,展示数学概念,告别枯燥乏味的抽象概念。培养孩子主动学习数学的兴趣,同时还能加深孩子对公式的印象,在数学思维的运用上更加灵活变通。

篇3:提升小学数学学习效率的策略

  小学数学学习是为了以后初高中的数学学习打下基础,因此,小学数学的好坏对以后数学的学习至关重要,下面小编为大家准备了小学数学学习思考方法,供大家参考。

  1、对应思想方法

  对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。

  2、假设思想方法

  假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

  3、比较思想方法

  比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

  4、符号化思想方法

  用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。

  5、类比思想方法

  类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

  6、转化思想方法

  转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

  7、分类思想方法

  分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

  8、集合思想方法

  集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。

  9、数形结合思想方法

  数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。

  10、统计思想方法

  小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。

  11、极限思想方法

  事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。

  12、代换思想方法

  它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?

  13、可逆思想方法

  它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。

  14、化归思维方法

  把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。化归的方向应该是化隐为显、化繁为简、化难为易、化未知为已知。

  15、变中抓不变的思想方法

  在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?

  16、数学模型思想方法

  所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。

  17、整体思想方法

  对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。

篇4:提升小学数学学习效率的策略

  数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

  一、课内重视听讲,课后及时复习。

  新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

  二、适当多做题,养成良好的解题习惯。

  要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

  三、调整心态,正确对待考试。

  首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

  在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

  由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

  如何学好数学

  学好数学的方法其实跟读其他科目没太大差别,流程上可区分为六个步骤:

  1. 预习

  2. 专心听讲

  3. 课后练习

  4. 测验

  5. 侦错、补强

  6. 回想

  以下就每一个步骤提出应注意事项,提供同学们参考。

  1. 预 习 : 在课前把老师即将教授的单元内容浏览一次,并留意不了解的部份。

  2. 专心听讲:

  (1)新的课程开始有很多新的名词定义或新的观念想法,老师的说明讲解绝对比同学们自己看书更清楚,务必用心听,切勿自作聪明而自误。

  若老师讲到你早先预习时不了解的那部份,你就要特别注意。

  有些同学听老师讲解的内容较简单,便以为他全会了,然后分心去做别的事,殊不知漏听了最精彩最重要的几句话,那几句话或许便是日后测验时答错的关键所在。

  (2)上课时一面听讲就要一面把重点背下来。定义、定理、公式等重点,上课时就要用心记忆,如此,当老师举例时才听得懂老师要阐述的要义。

  待回家后只需花很短的时间,便能将今日所教的课程复习完毕。事半而功倍。只可惜大多数同学上课像看电影一般,轻松地欣赏老师表演,下了课什麼都不记得,白白浪费一节课,真可惜。

  3. 课后练习 :

  (1) 整理重点

  有数学课的当天晚上,要把当天教的内容整理完毕,定义、定理、公式该背的一定要背熟,有些同学以为数学著重推理,不必死背,所以什麼都不背,这观念并不正确。一般所谓不死背,指的是不死背解法,但是基本的定义、定理、公式是我们解题的工具,没有记住这些,解题时将不能活用他们,好比医师若不将所有的医学知识、用药知识熟记心中,如何在第一时间救人。很多同学数学考不好,就是没有把定义认识清楚,也没有把一些重要定理、公式”完整地〃背熟。

  (2) 适当练习

  重点整理完后,要适当练习。先将老师上课时讲解过的例题做一次,然后做课本习题,行有余力,再做参考书或任课老师所发的补充试题。遇有难题一时解不出,可先略过,以免浪费时间,待闲暇时再作挑战,若仍解不出再与同学或老师讨论。

  (3) 练习时一定要亲自动手演算。很多同学常会在考试时解题解到一半,就接不下去,分析其原因就是他做练习时是用看的,很多关键步骤忽略掉了。

  4. 测验 :

  (1) 考前要把考试范围内的重点再整理一次,老师特别提示的重要题型一定要注意。

  (2) 考试时,会做的题目一定要做对,常计算错误的同学,尽量把计算速度放慢, 移项以及加减乘除都要小心处理,少使用“心算” 。

  (3) 考试时,我们的目的是要得高分,而不是作学术研究,所以遇到较难的题目不要 硬干,可先跳过,等到试卷中会做的题目都做完后,再利用剩下的时间挑战难题,如此便能将实力完全表现出来,达到最完美的演出。

  (4) 考试时,容易紧张的同学,有两个可能的原因:

  a. 准备不够充分,以致缺乏信心。这种人要加强试前的准备。

  b. 对得分预期太高,万一遇到几个难题解不出来,心思不能集中,造成分数更低。这种人必须调整心态,不要预期太高。

  5. 侦错、补强 :

  测验后,不论分数高低,要将做错的题目再订正一次,务必找出错误处,修正观念,如此才能将该单元学的更好。

  6. 回想:

  一个单元学完后,同学们要从头到尾把整个章节的重点内容回想一遍,特别注意标题,一般而言,每个小节的标题就是该小节的主题,也是最重要的。将主题重点回想一遍,才能完整了解我们在学些什麼东西。

篇5:提升小学数学学习效率的策略

  提升小学数学学习效率的策略有哪些

  虽然小学数学课程是一些基本的内容,但对儿童来说还是有困难的,许多儿童已经出现了“同题常犯错误”、“作业总是不能完成”等现象。不过,我不知道有没有有效的学习方法。

  记得我国著名教育家叶圣陶先生指出:“教学,是不需要教。掌握正确的学习方法对学习尤其是小学数学尤为重要。

  而且学习方法因人而异,不同的孩子,适合不同的学习方法,在这个时候,为孩子选择合适的学习方法是非常重要的;

  1.抓住课堂

  科学注重和平时期的研究,不适合突如其来的回顾。老师讲的每一堂课,浓度,倾听,跟随老师的想法。多听,多记老师所说的数学思想和学习方法。不要把你的思维局限在某个问题上。例如,“转换思想”和“数与形的结合”等思维方法远比解决某一问题更为重要。

  2。高质量的完成作业

  所谓的高质量是指高精度和高速度。

  在做作业时,有时重复相同类型问题的练习,必须有意识地检查速度和准确性,并且在每次做完这些问题时都能更深入地思考这些问题。如检查其内容、运用数学思维方法、解决问题的规律、技巧等.除了老师布置要考虑认真完成。如果你不轻易放弃的话,你应该在任何时候都带着“钉子”的精神,沉思冥想。灵感总是在不知不觉中来到你身边。更重要的是,这是一个挑战自己的机会。

  成功带来信心,这对学习科学是很重要的,而且它也促使你一次又一次地面对更多的困难挑战。甚至失败,真相也会给你留下深刻的印象,让你在不知不觉中当碰到同样的问题会反思错误的原因,今后如何避免。

  3。认真思考,多问问题。

  首先,老师给出了规律和定理,不仅是为了“知道它是什么”,而且也是为了“知道为什么”。如果你不了解你的学习,你应该知道它的根源。第二,学习任何学科应该持怀疑态度,特别是在科学。教师的讲解和教材内容都存在问题。确保不要堆积如山的问题,并完成这一天。简而言之,思考和提问是清除学习隐患的最好方法。

  4。总结比较,梳理你的思绪

  (1)知识点的归纳与比较。在你学习完每一章之后,你应该对这一章的内容做一个框架图,或者在你的脑海中仔细阅读,以理清它们之间的关系。对于相似和混淆的知识点需要进行分类和比较,有时可以用联想法加以区分。

  (2)课题的总结比较。学生可以建立自己的题库。一个是错误的问题,另一个是一个很好的问题。对于常见的作业或考试错误,请写下所选的内容,并在笔记的一侧写上红色的笔。在考试之前,只需要读红笔的内容。还有一些非常聪明或困难的问题需要记录,并且使用红笔来注释本主题的所有方法和思想。随着时间的推移,我可以总结出一些解决问题的规律,也可以用红笔写下这些规律。最后,它们将成为你宝贵的财富,对你的数学学习有很大的帮助。

  5。课外实践的选择吗

  课余时间对小学生来说是非常宝贵的。当课外锻炼越来越少和更好的时候,也是如此。每种类型的问题都掌握了学习的方法,只要每天问两三道问题,日子里,你就会打开很多想法。

  正确的学习方法是很重要的,但更重要的是毅力,最好的的精神。只要你多思考,多提问,把这种学习态度融入你的生活,你一定能够学好每一门课程。相信自己,掌握学习方法,你就会对所有的学习和激情感兴趣。

  6、学会主动预习

  认真阅读教材,养成主动预习的习惯,在讲解新知识之前,是获取数学知识的重要手段。因此,培养自学的能力,在老师的指导下学会读一本书,和老师精心设计考虑预览。

  例如,当自学例子时,我们应该弄清楚例子的内容是什么,告诉了什么条件,要求了什么,如何在书中回答它们,为什么要这样回答,是否有新的解决方案和解决它们的步骤是什么。把握这些重要问题,三思而后行,学会运用现有知识自主探索新知识。

  有些家长感到头疼的是他们的孩子在课堂上效率低下,主要原因是他们没有一个好的预习。

  7、听课不要仅仅是听,重要的是要思考

  一些学生的公式,自然的法则,如相当熟悉,但实际的问题,但不知道如何开始,我不知道如何应用他们的知识来解决这个问题。如果有这样的问题,让学生解答:“从立方体的高度移除2厘米后,它就变成了一个立方体。它的表面积减少了48平方厘米。立方体的体积是多少?””

  虽然学生对数学公式的记忆量很好,但由于问题涉及知识的广泛性,许多学生无法解决问题的思维,这就要求学生在教师的指导下,逐步掌握解决问题的思维方法。这个问题指的是长度单位、面积单位、矩形的图形、正方形、长方体、立方体;

  从图形变化关系:长方形和正方形。告诉从心理推理:矩形减少等于矩形底部的一部分,减少四部分的表面积等于面积和一个矩形的长度(即。广场的边缘)和一个立方体的体积。

  在老师的启发下,学生在分析学生后,根据自己的想法进行回答。一些学生很快得出结论:如果原始长方体的基底是X,那么就可以得到2X×4/48(即立方体的棱镜长度),因此长方体体积为6×6×6C16(立方厘米)。

  因此,在课堂上,教师最大的作用是:激励;孩子们在课堂上用老师的思想,依靠老师的指导,思考解决问题的想法;答案真的不重要;重要的是方法!

  8、及时总结解决问题的法律

  一般说来,数学问题的解决是有规律可循的。在解决问题时,要注意总结问题解决的规律。在解决每一项练习后,我们应注意以下几个问题:

  (I)主题的最重要特征是什么?

  (2)解决方案的基本知识和基本图形?

  (3)如何观察、联想和转换话题?

  (4)用什么数学思想和方法来解决这个问题?

  (5)解决这一问题的最关键步骤是什么?

  (6)你有类似的主题主题?解决方案和思维方式有什么异同?

  (7)在这个问题上你能找到多少解决办法?哪一个是最好的?哪种解决方案是一种特殊技能?你能总结在什么情况下使用?

  把一系列问题贯穿于问题解决的各个方面,逐步提高和坚持,儿童的心理稳定性和应对问题的能力能够不断提高,他们的思维能力就会得到锻炼和发展。

  9、拓宽解题思路

  在教学中,教师经常为学生设置疑问,提出问题,激励学生多思考,此时学生应积极思考,拓宽思路,使广义思维更好地发展。

  比如:修一条长2400米的运河,5天来修理它的20天,根据这个计算剩余的天数要完成多少天?根据总工作关系,工作效率和工作时间,学生可以列出以下公式:(1)礼物(2400x20%存在5)-5=2400(天)(2)x(1-20%)(2400x20%)=20(天)。

  老师鼓励学生问:“20%的学生需要5天才能完成,其余的学生需要几天(1-20%)?”“学生们很快就想出了一种将比率提高一倍的方法:(3)5×(1-20%)/20/20(天)。

  如果你从“知道一个数字的多少部分”的方法中思考,找到这个数字,你可以得到以下的解决方案:5/20-5/20(天)。激励学生,知识的比例来解决吗?

  学生将提出以下想法:(6)20%:(1到20%)=5:X(剩下的X天结束)。这样才能更好地启发学生思考,沟通知识之间的纵向和横向关系,改变解决问题的方法,拓宽学生解决问题的思维,培养学生思维的灵活性。

  10、充分发挥错题本的作用

  每个学生都准备一本“记忆错误手册”,在平时的作业、单元测试或期中考试、期末考试中记录错误,并指出错误的原因,这样就必须纠正错误,以后也不会发生类似的错误。在实际的学习,总是看这本书,做到心中有数。

  有许多学习暴君,因为他们使用错误的标题积极,并取得了高分。

  11、“1×5”学习法

  做一个问题,我们应该有一个问题去做收获。我们反对使用填海战略。

  做一个问题,从五个方面引导学生思考:

  ①这道题考查的知识点是什么。

  我们为什么要这么做?

  我是怎么想的。

  还有别的办法吗?

  (5)一个变量看到几个变化形式,认为自己是一个测试的创造者,理解人的意图,问题看看能不能有其他想法如何解决问题。

  12、关于写作业

  在作业过程中,有一种追求速度的心理状态。在检查问题时,学生粗心大意,粗心大意。在错误的问题上,它们被引导形成错误的问题分析方法。分析的目的在于使学生充分认识到错误阅读导致的问题解决错误,从而形成“我要正确阅读”的内在动机。我们应该引导学生认真地检查问题,真正理解问题的意义。

篇6:提升小学数学学习效率的策略

  一、“记错题法”。学生每人准备一个“记错本”,把自己平时作业、单元测试或期中、期末考试中出现的错误记录下来,并注明出错原因,做到有错必改,以后不再犯类似的错误。在实际的学习中,要经常查看这个本子,做到心中有数。

  二、“1×5”学习法。做一道题要有做一道题的收获。反对搞题海战术。

  做一道题,引导学生从五个方面思考:

  ①这道题考查的知识点是什么。

  ②为什么要这样做。

  ③我是如何想到的。

  ④还可以怎样做,有其它方法吗?

  ⑤一题多变看看它有几种变化的形式,把自己当作一个出题者,领会出题人的意图,看看能不能有其他的解题思路怎么样。

  三、“1×3”纠错法。

  一道错题,从三个方面分析:

  ①错在哪里。

  ②错的原因是什么。

  ③符合什么条件,错误才能变成正确。

  四、“1×3”思考法。一道对题,从三个方面思考:

  ①解题的依据是什么。

  ②有没有别的解法,若有多种解法,哪种解法更佳。

  ③这道题还可以如何变化?

  以上“四法”,既适合于学生的学,又适合于教师、家长的教。

篇7:提升小学数学学习效率的策略

  “学数学也怕墨守陈规,小学时有效的做法到了中学恐怕就不行了。”武钢三中数学特级教师、市“十大名师”、全国奥数金牌教练郭希连做客“晨报名师课堂”时说:由于小、初、高三个阶段数学的教育目的不同,不同阶段的学习方法也得适时作调整。

  有家长问郭希连:孩子很勤奋,小学阶段数学是强项,为何到了初中就变成了还可以,升入高中后就只见跌不见涨。现场有不少家长同样对这一现象表示不解,希望郭老师透露一个学好数学的方法。

  “做题是必要的,但不是做得越多越好,要是不善于归纳、总结,很难达到好的效果。”郭希连谈道,小学阶段,孩子通过死背、死算、死记、死做可能有所收获。但进入初中后,形象思维逐渐过渡到抽象思维,如果仍像过去一样靠“四个死”来学数学,而不去主动分析、探究、归纳、总结,数学能力很难提高,不仅如此,学习兴趣也将受到严重打击。

  名师讲授

  郭希连说,学数学,要懂得变通。想学好谈不上什么诀窍,但如果能落实好几个基本功,相信无论对于小学生还是中学生都是有积极意义的。

  超前想活跃思维

  课堂上,当老师提出问题后,要积极思考,不要等着老师给你答案,争取在老师讲解之前,自己通过读题理解题意,挖掘题目中的隐含条件,进而寻求解决问题的途径和方法。即使想错了想偏了也不要紧,重要的是在思考的过程中,达到对思维进行训练的效果。

  养成超前做的好习惯

  有的孩子平时做作业总是慢吞吞的,常常是边说话边做作业,边听音乐边做作业,本来30分钟可以完成的练习任务,却要拖到45分钟甚至更久才能完成。翻看他们的草稿纸,就是随便找的一张报纸或废纸,上面画得乱七八糟,很难看出他思维的完整性,一旦让他讲思维过程就“抓瞎”。超前做,就是在平时的学习中,严格要求自己把控好时间,能够在5分钟内完成的,一定不能超过5分钟。

  解答多问几个为什么

  超前总结就是在老师作出解答后,一定要试着在老师讲解前,自己对解答过程进行反思、归纳、总结,多问自己几个为什么,“老师为什么这么讲”、“我们哪一个的思路更好”。

  60%以上的孩子很难做到这一点。大家总认为老师讲的就是好的就是对的,结果思维禁锢被人牵着鼻子走。为什么有的人被称为“书呆子”?就是因为只关注读书的量,而不注重读书的质。

  互动问答

  数学考试总是出错

  学生:每次考试前我都用心复习,到了考试时才发现有很多地方没有复习到,做错了的题我都会认真订正,但下次考试时还是会出错,请问该怎么办?

篇8:提升小学数学学习效率的策略

  1.思考:思考是数学学习方法的核心。在学这门课中,思考有重大意义。解数学题时,首先要观察、分析、思考。思考往往能发现题目的特点,找出解题的突破口、简便的解题方法。在我们周围,凡是真正学得好的同学,都有勤于思考,经常开动脑筋的习惯,于是脑子就越用越灵,勤于思考变成了善于思考。我正因为掌握应用了这一方法,所以在全国数学竞赛中获得了武汉市一等奖。

  2.动手试一试:动手有助于消化学习过的知识,做到融会贯通。课下,我常常把老师讲过的公式进行推导,推导时不要看书,要默记。这样就能使自己对公式掌握滚瓜烂熟,可为公式变形计算打下扎实的基础。

  3.培养创造精神:所谓创造,就是想出新办法,做出新成绩,建立新理论。创造,就要不局限于老师、课本讲的方法。平时,有一些难度高的题目,我在听懂了老师讲的方法后,还要自己去找一找有没有另外的解法,这样能加深对题目的理解,能比较几种解法的利弊,使解题思维达到一个更高的境界。

篇9:提升小学数学学习效率的策略

小学数学是孩子们学习的基础,但也是很多孩子感到困难的地方。家长们常常苦恼于孩子的数学成绩,不知道如何帮助他们提高。其实,学习数学是有方法的,掌握正确的方法可以事半功倍。下面就给大家介绍一些小学数学学习的方法和技巧。

抓住课堂,高效学习

小学数学的学习,课堂是最重要的环节。孩子们应该在课堂上集中注意力,跟着老师的思路走,不仅要听懂,还要学会记笔记,记录下老师讲解的数学思想和解决问题的方法。不要只盯着题目看,要把思维扩展到更广阔的领域。

比如,当老师讲解“转换思想”和“数与形的结合”时,孩子们应该意识到这些思维方法比解决某个具体问题更重要。

高质量完成作业,巩固知识

作业是检验学习效果的重要手段。孩子们在做作业时,不仅要追求速度,更要追求质量。对于重复性的题目,要有意识地提高解题速度和准确性,并且每次做完都要深入思考,比如检查题目涉及的内容、运用的数学思维方法、解决问题的规律和技巧等。

除了老师布置的作业,孩子们还应该主动寻找一些适合自己的练习题,不断挑战自己,这样才能提高解决问题的能力。

认真思考,多问问题

学习数学不仅仅是记住公式和定理,更重要的是理解它们的来龙去脉。孩子们在学习过程中要有质疑精神,对老师讲解的内容和教材上的知识都要多问几个为什么。同时,要学会总结比较,对于相似和混淆的知识点要进行分类和比较,这样有助于加深记忆和理解。

比较,梳理思路

每学完一章,孩子们应该在脑海中或者在纸上构建一个知识框架图,理清各个知识点之间的关系。对于难题和易错题,要记录下来,并且用红笔标注解题方法和思想。随着时间的积累,孩子们可以总结出一些解决问题的规律,这些将成为他们宝贵的财富,对数学学习大有裨益。

课外实践,提升能力

课余时间对于小学生来说非常宝贵,但是适当地进行一些课外数学练习是非常重要的。孩子们可以选择一些适合自己的题目进行练习,这样可以拓宽他们的思路,提高他们的解题能力。

学会主动预习,提高课堂效率

预习是获取数学知识的重要手段。孩子们应该养成主动预习的习惯,在老师讲解新知识之前,先自己阅读教材,这样可以在课堂上更好地理解和吸收新知识。

听课不仅仅是听,更重要的是思考

在课堂上,老师的作用不仅仅是传授知识,更重要的是启发孩子们的思考。孩子们应该在老师的引导下,积极思考问题解决的思路和方法,而不仅仅是追求答案。答案并不重要,重要的是学会如何解决问题。

及时总结解决问题的规律

数学问题的解决是有规律可循的。孩子们在解决问题后,应该总结问题解决的方法和规律,并且比较不同问题的异同点,这样可以帮助他们更好地理解和记忆。

拓宽解题思路,培养创新思维

在学习数学的过程中,孩子们应该学会从多个角度思考问题,拓宽解题思路。老师可以设置一些疑问和挑战,激励孩子们多思考,这样可以帮助他们更好地发展创新思维。

充分发挥错题本的作用

准备一个“错题本”,记录平时作业、考试中出现的错误,并且分析错误的原因,这样可以帮助孩子们避免重复犯错。通过定期复习错题本,孩子们可以加深对知识点的理解,提高解题的正确率。

“1×5”学习法,举一反三

孩子们在做题时要有意识地从多个角度分析问题,学会“一题多解”和“多题一解”,这样可以帮助他们更好地理解和应用数学知识。

关于写作业,质量比速度更重要

孩子们在做作业时要有耐心,认真审题,避免因为粗心大意而犯错。要养成检查作业的习惯,确保作业的质量。

篇10:提升小学数学学习效率的策略

  小结一下提升小学数学学习效率的策略:

  1.求教与自学相结合

  在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。

  2.学习与思考相结合

  在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。

  3.学用结合,勤于实践

  在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

  4。博观约取,由博返约

  课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究。掌握其知识结构。

  5.既有模仿,又有创新

  模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。

  6.及时复习,增强记忆

  课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

  7.总结学习经验,评价学习效果

  学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。

 

篇11:提升小学数学学习效率的策略

  数学不是很难,特别是小学数学,初中需要背公式定理。而小学数学主要是多做题,多联系。

  数学学习的基本环节与原则

  在校学生的学习,是在教师指导下进行的,课堂学习一般由四个环节组成:首先要听老师的课,这就是听课的一环;为了消化和掌握课堂上所传授的知识,需要做练习,这就是作业的一环,为了进一步把所学的知识巩固起来,并了解其内在联系,需要记忆和归纳整理,这就是复习的一环;为了使下一节课学得更主动,事先需要阅读新课,这就是预习的一环。这四个环节的每一部分都有它的独立意义和独立作用,而各部分之间又相互衔接,相互影响,相互制约。这四个环节组成一个小循环,也就是一个学习周期。学习的周期就是学习的车轮运转一周的轨迹,善于学习的人应该从车轮运转一周的撤印中找到它的起止点和中间环节,把四个环节组成定型的学习周期,组成一个学习系统,使每个环节都能充分发挥它们的作用,这样就能取得好的学习效果。

  数学学习的基本过程

  学生学习独立新知时,一般要经历以下五个基本步骤。

  第一步,对所学知识事物或数的变化发展过程进 行初步感知。如考察事、物的存在、演变的条件与过程;参与对所学知识的演示、操作与实物及再现事物的存在、变化和发展过程,进而获得对所学知识的初步感受。

  初步认识新知--建立感性

  认识开展联想 ---形成新知表

  探究新旧知识的内在联系---第二次感知

  抽象概括新知本质特征---向理性知识转化

  记忆新知--- 巩 固

  应用新知 ---将知识转化为能力

  重视学生学数学的基本过程的研究,对改进教学方法、加强学法指导,提高教学质量具有十分重要的意义。

篇12:提升小学数学学习效率的策略

  1。温故法

  不论是皮亚杰还是奥苏伯尔在概念学习理论方面都认为概念教学的起步是在已有的认知结构的基础上进行的。因此,教学新概念前,如果能对学生认知结构中原有的适当概念作一些结构上的变化,引入新概念,则有利于促进新概念的形成。

  2。类比法

  抓住新旧知识的本质联系,有目的、有计划地让学生将有关新旧知识进行类比,就能很快地得出新旧知识在某些属性上的相同(相似)的结论而引进概念。

  如,教学“最简比的意义”,我们就可以用最简分数意义与它进行类比:

  ①判断:下列分数哪些是最简分数?哪些不是?为什么?

  ②将上述分数看作比,回答哪几个比的前项和原项是互质数?

  ③比的前项和后项是互质数的比,就叫做最简单的整数比,从而引进了化简比的概念。

  可见,这种方法有利于分析二者异同,归纳出新授内容的有关知识,有利于帮助学生架起新、旧知识的桥梁,促进知识的迁移,提高探索能力。

  3。喻理法

  为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念,谓之喻理导入法。

  如,学“用字母表示数”时,先出示的两句话:“阿Q和小D在看《W的悲剧》。”、“我在A市S街上遇见一位朋友。”问:这两个句子中的字母各表示什么?再出示扑克牌“红桃A”,要求学生回答这里的A则表示什么?最后出示等式“0.5×x=3.5”,擦去等号及3.5,变成“0.5×x”后,问两道式子里的x各表示什么?根据学生的回答,教师结合板书进行小结:字母可以表示人名、地名和数,一个字母可以表示一个数,也可以表示任何数。

  这样,枯燥的概念变得生动、有趣,同学们在由衷的喜悦中进入了“字母表示数”概念的学习。

  4。置疑法

  通过揭示数学自身的矛盾来引入新概念,以突出引进新概念的必要性和合理性,调动了解新概念的强烈动机和愿望。

  例如:“通分”让学生回答下面每组中两个分数的大小:

  显然,(1)~(4)题学生能很快回答,第(5)题是新授例题,到底怎样回答?学生处于暂时的困惑,教师抓住学生急需求教于老师的这个时

  的回答可用:画跋匕较大小、化成同分母后比较大小、化成同分子后比较大小、化成小数比较大小等,进而,教师再引导学生分析比较上面哪一种方法

  我们要学习的通分。

  5。演示法

  有些教学概念,如果把它最本质的属性用恰当的图形表示出来,把数与形结合起来,使感性材料的提供更为丰富,则会收到良好效果,易于理解和掌握。

  如,学“求一个数的几倍是多少”的应用题,重要的是建立“倍”的概念,引进这个概念,可出示2只一行的白蝴蝶图,再2只、2只地出示3个2只的第二行花蝴蝶图,结合演示,通过循序答问,使学生清晰地认识到:花蝴蝶与白蝴蝶比较,白蝴蝶1个2只,花蝴蝶是3个2只;把一个2只当作1份,则白蝴蝶的只数相当于1份,花蝴蝶就有3份。用数学上的话说:花蝴蝶与白蝴蝶比,把白蝴蝶当作一倍,花蝴蝶的只数就是白蝴蝶的3倍,这样,从演示图形中让学生看到从“个数”到“份数”,再引出倍数,很快地触及了概念的本质。

  6。问答法

  引入概念采用问答式,能在疑、答、辩的过程中,步步探幽,引人入胜。

  如,开始学扇形概念时,教师先把自己手中的摺扇打开,问:这是什么?(扇子)接着出示下图问:图中的影形部分像什么?(扇子)所以我们称它是什么?(扇形)那么,圆中空白部分是不是扇形呢?学生意见不一!那么究竟什么样的图形叫扇形呢?指导学生带着问题学习课本。这样,思维从问题开始,随着问题的启发,内在潜力得到了充分发挥,从而对“扇形”概念本质特征的认识在不断深化中达到智力升级。

  7。作图法

  用直尺、三角板和圆规等作图工具画出已学过的图形,是学习几何的最基本的能力。通过作图揭示新概念的本质属性,就可以从画图引入这些概念。

  如讲三角形的“高”和“底”时,可先作图:

  (1)过直线上一点画一条和这条直线垂直的直线;

  (2)过直线外的一点画一条和这条直线垂直的直线;

  (3)给出三个图,要求学生作一条过顶点和顶点所对的边垂直的线段,大量作图的基础上概括出“顶点到垂足之间的线段叫做三角形的高”,“和高垂直的边叫底”。

  8。计算法

  通过计算能揭示新概念的本质属性,因此,可以从学生所迅速的计算引入新概念,如讲“余数”时,可以让学生计算下列各题:

  (1)3个人吃10个苹果,平均每人吃几个?

  (2)23名同学植100棵树,每人平均种几棵?

  学生能很容易地列出算式,当计算时,见到余下来的数会不知所措,这时教师再指出:

  (1)题竖式中余下的“1”;(2)题竖式中余下的“8”,都小于除数,在除法里叫做“余数”。学习新概念的方法很多,但彼此并不是孤立的,就是同一个内容的学习方法也没有固定的模式,有时需要互相配合才能收到良好的效果,如也可以这样引入“扇形”概念,让学生把课前带的一把摺扇一折一折地从小到大展开,引导学生注意观察,然后概括出:

  第一,折扇有一个固定的轴;

  第二,折扇的“骨”部长。

  然后再要求学生在已知圆内作两条半径,使它的夹角为20°、40°、120°、……引导学生观察所围成的图形与刚才展开的折扇有哪些相似之处,最后概括出扇形。

 

篇13:提升小学数学学习效率的策略

家长们,咱们今天来聊聊怎么帮孩子学好小学数学,这可是个打基础的重要阶段,别看这些数学知识简单,但对孩子来说,可是不小的挑战。咱们得帮他们把基础打扎实了,这样以后的学习才能得心应手,不会手忙脚乱。

重视计算

计算可是数学的基石,就像语文的识字一样,是基础中的基础。要是连字都不认识,语文肯定学不好;同样的,计算要是不过关,数学也别想学好。所以,咱们得让孩子每天练练口算,一开始可能只能做20道,但时间长了,你会发现孩子的速度越来越快,准确率也越来越高。

数学在生活中无处不在

数学可不是纸上谈兵,它跟我们的生活可是息息相关的。买东西、算利息、赚钱亏本,这些都离不开数学。咱们可以在生活中多给孩子出出数学题,比如买菜的时候,问问他一斤苹果多少钱,买了三斤要多少钱,给阿姨20块钱,能找回来多少钱。别小看这些日常问题,它们可都是小学数学里的重点,孩子接触多了,自然就会解题了。

预习是提高学习效率的关键

有些家长可能发现孩子上课效率不高,这可能是没有做好预习的原因。预习就像是在打仗前先侦查地形,做到心中有数。咱们可以引导孩子主动预习,让他们学会自己看书,带着问题去学习,这样就能有的放矢,提高学习效率。

思考是数学学习方法的灵魂

有些孩子公式、性质背得滚瓜烂熟,但一遇到实际问题就束手无策。这需要咱们家长和老师一起引导孩子去思考解题的思路,掌握学习方法。比如,给孩子们出一道题:把一个长方体的高减少2厘米,变成一个正方体,表面积减少了48平方厘米,求这个正方体的体积。

这个问题涉及到长度单位、面积单位、图形变化等多个知识点,孩子需要在家长的引导下,一步步分析问题,最终找到解题方法。

阅读兴趣对数学学习的重要性

跟大家分享一个资深老师给我的建议。她说,孩子的数学学习情况如何,可以从他们是否喜欢阅读来判断。那些数学成绩好的孩子,往往从小学就开始大量阅读有深度、有素养的好书,他们思维活跃,视野开阔。而成绩不太理想的孩子,往往对阅读没有太大兴趣。

这不仅会影响到他们的审题能力,还会影响到他们对数学问题的理解和解决能力。

好了,今天的分享就到这里。希望这些小技巧能帮到大家,让孩子在学习数学的道路上越走越宽广。记住,基础打牢了,未来才能走得更远!。

篇14:提升小学数学学习效率的策略

  学习方法会因人而异,不同的孩子,适合不一样的学习方法;那此时,给孩子挑选适合的学习方法,就显得很关键;小数整理了关于小学数学的一些学习方法汇总,希望能给大家带来帮助。

  1、学会主动预习

  新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

  因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

  2、听课不要仅仅是听,重要的是要思考

  一些学生对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。

  如有这样一道题让学生解“把一个长方体的高去掉2_厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”

  同学们对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师的引导下逐渐掌握解题时的思考方法。

  这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形、长方体、正方体;

  从图形变化关系讲:长方形→正方形;

  从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的面积→求出长方形的长(即正方形的一个棱长)→正方体的体积;

  经老师启发,学生分析后,学生根据其思路(可画出图形)进行解答。有的学生很快解答出来:设原长方体的底面长为X,则2X×4=48得:X=6(即正方体的棱长),这样得出正方体的体积为:6×6×6=216(立方厘米)。

  所以说,在课堂上,老师最大的作用是:启发;孩子在课堂上要紧跟老师的思路,靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!

  3、及时总结解题规律

  解答数学问题总的讲是有规律可循的。

  在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:

  (1)本题最重要的特点是什么?

  (2)解本题用了哪些基本知识与基本图形?

  (3)本题你是怎样观察、联想、变换来实现转化的?

  (4)解本题用了哪些数学思想、方法?

  (5)解本题最关键的一步在那里?

  (6)你做过与本题类似的题目吗?在解法、思路上有什么异同?

  (7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?

  把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,孩子解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。

  4、拓宽解题思路

  在教学中老师会经常给学生设置疑点,提出问题,启发学生多思多想,这时学生要积极思考,拓宽思路,以使思维的广阔性得到较好的发展。

  如:修一条长2400米的水渠,5天修了它的20%,照这样计算剩下的还需几天修完?根据工作总量、工作效率、工作时间三者的关系,学生可以列出下列算式:

  (1)2400÷(2400×20%÷5)-5=20(天)

  (2)2400×(1-20%)÷(2400×20%÷)=20(天)。

  教师启发学生,提问:“修完它的20%用5天,还剩下(1-20%要用多少天修完呢?”学生很快想到倍比的方法列出:

  (3)5×(1-20%)÷20%=20(天)。如果从“已知一个数的几分之几是多少,求这个数”的方法去思考,又可得出下列解法:5÷20%-5=20(天)。

  再启发学生,能否用比例知识解答?学生又会想出:

  (4)20%∶(1-20%)=5∶X(设剩下的用X天修完)。

  这样启发学生多思,沟通了知识间的纵横关系,变换解题方法,拓宽学生的解题思路,培养学生思维的灵活性。

  5、充分发挥错题本的作用

  学生每人准备一个“记错本”,把自己平时作业、单元测试或期中、期末考试中出现的错误记录下来,并注明出错原因,做到有错必改,以后不再犯类似的错误。

  在实际的学习中,要经常查看这个本子,做到心中有数。有很多学霸都是因为积极使用了错题本,而考取了高分。

  6、“1×5”学习法做一道题要有做一道题的收获

  反对搞题海战术。做一道题,引导学生从五个方面思考:

  ①这道题考查的知识点是什么。

  ②为什么要这样做。

  ③我是如何想到的。

  ④还可以怎样做,有其它方法吗?

  ⑤一题多变看看它有几种变化的形式,把自己当作一个出题者,领会出题人的意图,看看能不能有其他的解题思路怎么样。

  7、关于写作业

  在作业过程中存在求速的心理状态,审题时走马观花,粗心大意,对于做错的题目上,引导学生形成错题分析法,而分析的目的在于让学生充分认识到由于不正确的阅读导致的解题错误,从而形成“我要正确阅读”的内部动机,引导学生仔细审题,真正弄懂题意。

篇15:提升小学数学学习效率的策略

  一、数形结合的思想方法

  数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。

  例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。

  二、集合的思想方法

  把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。

  如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。

  三、对应的思想方法

  对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。

  如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。

  四、函数的思想方法

  恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。

  函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。

  五、极限的思想方法

  极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。

  现行小学教材中有许多处注意了极限思想的渗透。 在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1 ÷ 3 = 0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。

  六、化归的思想方法

  化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。

  如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。

  七、归纳的思想方法

  在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。

  如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。

  八、符号化的思想方法

  数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。

  人教版教材从一年级就开始用“□”或“( )”代替变量 x ,让学生在其中填数。例如: 1 + 2 = □ ,6 +( )=8 , 7 = □+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出□ ○ □ = □ (个)。

  符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此 ,教师在教学中要注意学生的可接受性。

  九、统计的思想方法

  在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法

  小学数学除渗透运用了上述各数学思想方法外,还渗透运用了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。